
Reducing Coarse Grids Contention in a
Parallel Algebraic Multigrid

Andrey Prokopenko

Jonathan Hu, Siva Rajamanickam

SIAM Parallel Processing

19 February 2014

Sandia National Laboratories

SAND 2014-1299C

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corp, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

Algebraic multigrid (AMG)

• Iterative method for solving linear equations
• Commonly used as a preconditioner
• Idea: capture error at multiple resolutions using grid transfer

operator:
– Smoothing damps the oscillatory error (high energy)
– Coarse grid correction reduces the smooth error (low energy)

Restriction

Pr
ol

on
ga

tio
n

Interpolate e to the original grid

Restrict r to a coarser grid

Recursive
loop

Determine the error e
by solving Ae = r
on the coarser grid

Calculate the residual r = f – Au

Correct v (v v+e)

Solving Au = f with initial guess v

Pre-smoothing

Post-smoothing

Increased communication

Coarse grids typically have increased communication

• Fewer flops per node

• Denser coarse matrices
For instance, for elasticity number of nonzeros per row:

81 → 206 → 373 → 691

Sparse allocations

Large clusters are used by many users who can submit thousands
of jobs. Therefore, to reduce time in queues many schedulers can
construct sparse allocations. These could be problematic:
• Messages can travel long distances between two processors;
• Some links can become oversaturated

Outline

• Motivation

• Repartitioning

• Mapping algorithms
– Mapping for sparse allocations
– Mapping reducing data migration

• Conclusions and future work

Other approaches

• Non-Galerkin AMG
J. Schroder, R. Falgout

• Additive AMG
P. Vassilevski, U. Yang

• Coarse level data redundancy
H. Gahvari, W. Gropp, K. Jordan, M. Schultz, U. Yang

Multiple reasons to do repartitioning:

• Mitigate increase in complexity of SA-AMG
Uncoupled aggregation without repartitioning produces inner-
boundary effects

• Improve load balancing

• Reduce communication
Fewer parts => less communication

Why repartitioning?

Repartitioning steps

The decision to repartition depends on several heuristics:
• Load imbalance
• Load per processor (i.e., number of DOFs/processor)

The repartitioning itself is done in several stages:
1. Compute new partitions

2. Map partitions to remaining processors

3. Do data redistribution

Repartitioning affects:
• Setup phase
– Data redistribution
– Coarser levels construction

• Solve phase
– Matrix-vector multiplication

Minimizing data contention

Goal: improve solve time on sparse allocations

Given data:
• Part coordinates (averaged)
• Application communication graph
• Processor (core) coordinates

try to improve the following metrics:
• Average hop count
• Congestion

assuming that:
• Messages always take the shortest route
• Only static routing (no dynamic)

(4,8)

(2,7)

(2,7)

(4,9)

(4,8)

(3,6)

Minimizing data contention

Parts coordinates Processors coordinates

Minimizing data contention

Parts coordinates Processors coordinates

Minimizing data contention

Parts coordinates Processors coordinates

Minimizing data contention

Parts coordinates Processors coordinates

Minimizing data contention

Avg hop count: 2.02
Congestion: 5.03

Avg hop count: 1.32
Congestion: 3.12

Bipartite graph matching

Goal: minimize setup time (and, possibly, solve time) for
any allocation

Given data:
• Number of each part DOFs for each subdomain

try to improve the following metrics:
• Number of DOFs staying on the same processor

assuming that:
• Less redistribution leads to faster performance

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning Bipartite graph

Bipartite graph matching

Partitioning

Results

3072 6144 12288
2.5

3

3.5

4

4.5

5

3072 6144 12288
2.5

3

3.5

4

4.5

5

Setup time Solve time

Model problem: Laplace3D, 7-point stencil

Conclusions / Future work

• Mapping of tasks to processors matters

• Reducing data migration seems to be more important than
reducing solve kernels

• Careful mapping of data to processors may bring substantial
benefits

• Combine two approaches for robustness

• Examine other mapping algorithms

	Slide 1
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

